skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ichikawa, Shuhei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. For the development of III-nitride-semiconductor-based monolithic micro-light-emitting diode (LED) displays, Eu,O-codoped GaN (GaN:Eu,O) is a promising material candidate for the red LEDs. The luminescence efficiency of Eu-related emission strongly depends on the local atomic structure of Eu ions. Our previous research has revealed that post-growth thermal annealing is an effective method for reconfiguring luminescent sites, leading to a significant increase in light output. We observed the preferential formation of a site with a peak at ∼2.004 eV by the annealing process. In this study, we demonstrate that it is a previously unidentified independent site (OMVPE-X) using combined excitation–emission spectroscopy and time-resolved photoluminescence measurements. In addition, we perform excitation power-dependent photoluminescence measurements and show that this OMVPE-X site dominates the emission at a low excitation power region despite its small relative abundance, suggesting a high excitation efficiency. Most importantly, applying our annealing technique to an LED exhibits a reasonably increased electroluminescence intensity associated with OMVPE-X, confirming that this site has a high excitation efficiency also under current injection. These results demonstrate the importance of OMVPE-X as a notable luminescent site for brighter and more efficient GaN:Eu,O-based LEDs. 
    more » « less
  2. A bridge-type photonic crystal (PhC) nanocavity based on Er,O-codoped GaAs is employed to realize enhancement of Er luminescence. By adjusting the structural design and measurement temperature, the cavity mode's wavelength can be coupled to Er luminescence. The peak emission intensity from an Er-2O defect center was enhanced 7.3 times at 40 nW pump power and 77 K. The experimental Q-factor is estimated to be over 1.2 × 104, and the luminescence intensity shows superlinearity with excitation power, suggesting Er luminescence amplification. This result would pave the way towards the realization of highly efficient single-photon emitters based on rare-earth elements. 
    more » « less